Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

rev1(0, nil) → 0
rev1(s(X), nil) → s(X)
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

rev1(0, nil) → 0
rev1(s(X), nil) → s(X)
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

rev1(0, nil) → 0
rev1(s(X), nil) → s(X)
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

The set Q consists of the following terms:

rev1(0, nil)
rev1(s(x0), nil)
rev1(x0, cons(x1, x2))
rev(nil)
rev(cons(x0, x1))
rev2(x0, nil)
rev2(x0, cons(x1, x2))


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

REV2(X, cons(Y, L)) → REV(cons(X, rev(rev2(Y, L))))
REV2(X, cons(Y, L)) → REV2(Y, L)
REV(cons(X, L)) → REV2(X, L)
REV(cons(X, L)) → REV1(X, L)
REV2(X, cons(Y, L)) → REV(rev2(Y, L))
REV1(X, cons(Y, L)) → REV1(Y, L)

The TRS R consists of the following rules:

rev1(0, nil) → 0
rev1(s(X), nil) → s(X)
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

The set Q consists of the following terms:

rev1(0, nil)
rev1(s(x0), nil)
rev1(x0, cons(x1, x2))
rev(nil)
rev(cons(x0, x1))
rev2(x0, nil)
rev2(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

REV2(X, cons(Y, L)) → REV(cons(X, rev(rev2(Y, L))))
REV2(X, cons(Y, L)) → REV2(Y, L)
REV(cons(X, L)) → REV2(X, L)
REV(cons(X, L)) → REV1(X, L)
REV2(X, cons(Y, L)) → REV(rev2(Y, L))
REV1(X, cons(Y, L)) → REV1(Y, L)

The TRS R consists of the following rules:

rev1(0, nil) → 0
rev1(s(X), nil) → s(X)
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

The set Q consists of the following terms:

rev1(0, nil)
rev1(s(x0), nil)
rev1(x0, cons(x1, x2))
rev(nil)
rev(cons(x0, x1))
rev2(x0, nil)
rev2(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

REV2(X, cons(Y, L)) → REV(cons(X, rev(rev2(Y, L))))
REV2(X, cons(Y, L)) → REV2(Y, L)
REV(cons(X, L)) → REV2(X, L)
REV(cons(X, L)) → REV1(X, L)
REV1(X, cons(Y, L)) → REV1(Y, L)
REV2(X, cons(Y, L)) → REV(rev2(Y, L))

The TRS R consists of the following rules:

rev1(0, nil) → 0
rev1(s(X), nil) → s(X)
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

The set Q consists of the following terms:

rev1(0, nil)
rev1(s(x0), nil)
rev1(x0, cons(x1, x2))
rev(nil)
rev(cons(x0, x1))
rev2(x0, nil)
rev2(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 1 less node.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

REV1(X, cons(Y, L)) → REV1(Y, L)

The TRS R consists of the following rules:

rev1(0, nil) → 0
rev1(s(X), nil) → s(X)
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

The set Q consists of the following terms:

rev1(0, nil)
rev1(s(x0), nil)
rev1(x0, cons(x1, x2))
rev(nil)
rev(cons(x0, x1))
rev2(x0, nil)
rev2(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


REV1(X, cons(Y, L)) → REV1(Y, L)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
REV1(x1, x2)  =  x2
cons(x1, x2)  =  cons(x2)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

rev1(0, nil) → 0
rev1(s(X), nil) → s(X)
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

The set Q consists of the following terms:

rev1(0, nil)
rev1(s(x0), nil)
rev1(x0, cons(x1, x2))
rev(nil)
rev(cons(x0, x1))
rev2(x0, nil)
rev2(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

REV2(X, cons(Y, L)) → REV(cons(X, rev(rev2(Y, L))))
REV2(X, cons(Y, L)) → REV2(Y, L)
REV(cons(X, L)) → REV2(X, L)
REV2(X, cons(Y, L)) → REV(rev2(Y, L))

The TRS R consists of the following rules:

rev1(0, nil) → 0
rev1(s(X), nil) → s(X)
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

The set Q consists of the following terms:

rev1(0, nil)
rev1(s(x0), nil)
rev1(x0, cons(x1, x2))
rev(nil)
rev(cons(x0, x1))
rev2(x0, nil)
rev2(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


REV2(X, cons(Y, L)) → REV2(Y, L)
REV(cons(X, L)) → REV2(X, L)
REV2(X, cons(Y, L)) → REV(rev2(Y, L))
The remaining pairs can at least be oriented weakly.

REV2(X, cons(Y, L)) → REV(cons(X, rev(rev2(Y, L))))
Used ordering: Combined order from the following AFS and order.
REV2(x1, x2)  =  x2
cons(x1, x2)  =  cons(x2)
REV(x1)  =  x1
rev(x1)  =  x1
rev2(x1, x2)  =  x2
nil  =  nil

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [14] were oriented:

rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev(nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

REV2(X, cons(Y, L)) → REV(cons(X, rev(rev2(Y, L))))

The TRS R consists of the following rules:

rev1(0, nil) → 0
rev1(s(X), nil) → s(X)
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

The set Q consists of the following terms:

rev1(0, nil)
rev1(s(x0), nil)
rev1(x0, cons(x1, x2))
rev(nil)
rev(cons(x0, x1))
rev2(x0, nil)
rev2(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.